BACKGROUND: Diabetic cardiomyopathy (DbCM) is indistinguishable from idiopathic dilated cardiomyopathy (IDCM) as specific histological and/or biochemical markers are unavailable. METHODS AND RESULTS: Comparative histology, electron microscopy, morphometry for cell volume composition and myocardial fibrosis, reactive oxygen species (ROS), polymerase chain reaction for cardiotropic viruses, immunohistochemistry for nitrotyrosine, inducible nitric oxide synthase (iNOS), 8-hydroxydeoxyguanosine (8-OH-dG) and proteomics have been evaluated in endomyocardial biopsies from 9 patients (pts) (5 male and 4 female, mean age 61 ± 13 years) with DbCM (left ventricular end-diastolic diameter 65 ± 2.3mm; ejection fraction 27 ± 6) and type 2 diabetes mellitus and 9 pts with IDCM (mean age 60 ± 9 years) matched for sex, age and severity of left ventricular (LV) dysfunction. Controls were surgical biopsies from 9 pts with mitral stenosis and normal LV dimensions and function. No qualitative morphological changes were observed between DbCM and IDCM although mitochondrial damage and myofibrillolysis appeared more pronounced in DbCM. ROS were 5 times higher in DbCM than in IDCM and controls and were associated with higher expression of cytoplasm iNOS and nitrotyrosine and nuclear 8-OH-dG. Apoptosis was 14 times higher in DbCM than in IDCM and 41 times higher than in controls. Proteomic profile showed in DbCM a reduced expression of proteins related to beta-oxidation and detoxification pathway. CONCLUSIONS: DbCM is a distinctive ROS-mediated disorder with oxidative damage of myocyte's structural proteins and DNA causing cell dysfunction and death. Reduced expression of beta-oxidation proteins suggests a decline of energy production and of mitochondrial function.

Histological and proteomic profile of diabetic versus non-diabetic dilated cardiomyopathy / Frustaci, Andrea; Ciccosanti, Fabiola; Chimenti, Cristina; Nardacci, Roberta; Corazzari, Marco; Verardo, Romina Annita; Ippolito, Giuseppe; Petrosillo, Nicola; Fimia, Gian Maria; Piacentini, Mauro. - In: INTERNATIONAL JOURNAL OF CARDIOLOGY. - ISSN 0167-5273. - STAMPA. - 203:(2016), pp. 282-289. [10.1016/j.ijcard.2015.10.119]

Histological and proteomic profile of diabetic versus non-diabetic dilated cardiomyopathy

FRUSTACI, ANDREA;CHIMENTI, CRISTINA;VERARDO, Romina Annita;Fimia, Gian Maria;PIACENTINI, Mauro
2016

Abstract

BACKGROUND: Diabetic cardiomyopathy (DbCM) is indistinguishable from idiopathic dilated cardiomyopathy (IDCM) as specific histological and/or biochemical markers are unavailable. METHODS AND RESULTS: Comparative histology, electron microscopy, morphometry for cell volume composition and myocardial fibrosis, reactive oxygen species (ROS), polymerase chain reaction for cardiotropic viruses, immunohistochemistry for nitrotyrosine, inducible nitric oxide synthase (iNOS), 8-hydroxydeoxyguanosine (8-OH-dG) and proteomics have been evaluated in endomyocardial biopsies from 9 patients (pts) (5 male and 4 female, mean age 61 ± 13 years) with DbCM (left ventricular end-diastolic diameter 65 ± 2.3mm; ejection fraction 27 ± 6) and type 2 diabetes mellitus and 9 pts with IDCM (mean age 60 ± 9 years) matched for sex, age and severity of left ventricular (LV) dysfunction. Controls were surgical biopsies from 9 pts with mitral stenosis and normal LV dimensions and function. No qualitative morphological changes were observed between DbCM and IDCM although mitochondrial damage and myofibrillolysis appeared more pronounced in DbCM. ROS were 5 times higher in DbCM than in IDCM and controls and were associated with higher expression of cytoplasm iNOS and nitrotyrosine and nuclear 8-OH-dG. Apoptosis was 14 times higher in DbCM than in IDCM and 41 times higher than in controls. Proteomic profile showed in DbCM a reduced expression of proteins related to beta-oxidation and detoxification pathway. CONCLUSIONS: DbCM is a distinctive ROS-mediated disorder with oxidative damage of myocyte's structural proteins and DNA causing cell dysfunction and death. Reduced expression of beta-oxidation proteins suggests a decline of energy production and of mitochondrial function.
2016
cardiomyopathy; diabetes; oxidative damage; reactive oxygen species; aged; biopsy; cardiomyopathy, dilated; diabetes mellitus, type 2; diabetic cardiomyopathies; female; humans; male; middle aged; proteomics; reactive oxygen species; stroke volume; cardiology and cardiovascular medicine
01 Pubblicazione su rivista::01a Articolo in rivista
Histological and proteomic profile of diabetic versus non-diabetic dilated cardiomyopathy / Frustaci, Andrea; Ciccosanti, Fabiola; Chimenti, Cristina; Nardacci, Roberta; Corazzari, Marco; Verardo, Romina Annita; Ippolito, Giuseppe; Petrosillo, Nicola; Fimia, Gian Maria; Piacentini, Mauro. - In: INTERNATIONAL JOURNAL OF CARDIOLOGY. - ISSN 0167-5273. - STAMPA. - 203:(2016), pp. 282-289. [10.1016/j.ijcard.2015.10.119]
File allegati a questo prodotto
File Dimensione Formato  
Frustaci_Histological_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/834096
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact